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Abstract. Intermittency is a basic feature of fully developed turbulence, for both velocity and passive
scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The
same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the
velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field.
Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian
passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations
between these scaling exponents, associated to different transformations linking space and time scales. We
obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian
passive scalar scaling exponents.

PACS. 47.27.Gs Isotropic turbulence; homogeneous turbulence – 47.53.+n Fractals

1 Introduction: scaling laws for Eulerian
and Lagrangian turbulence

A better description, understanding and prediction of the
properties of the mixing of passive scalars by a turbulent
flow is important for many applications including oceanic
and atmospheric dispersion studies, chemical engineering
and combustion. In fully developed turbulence, interest-
ing properties of these flows are scale invariance and in-
termittency for velocity and passive scalars. We consider
here the inertial convective subrange, associated to large
Peclet and Reynolds numbers; we do not consider the vis-
cous convective range, and thus we can assume that the
Prandtl (or Schmidt) number (=ν/Γθ where ν is the vis-
cosity and Γθ is the scalar diffusivity of the fluid) is of
order 1. However, even for larger Prandtl numbers, iner-
tial range characteristics are not expected to be modified
[1] and the results obtained here should apply as well.
Turbulent properties can be considered in an Eulerian or
Lagrangian framework, leading to quite different scaling
laws. Here we focus on the Lagrangian approach, which
is important for transport and mixing studies; it is also
the natural description for stochastic models of turbulent
mixing (see [2]).

Since passive scalars are advected by the velocity field,
we recall here the scaling laws for the velocity as well, but
the focus of the paper are passive scalar scaling laws. For
scales belonging to the inertial convective range, denoting
∆U� = |U(x + �) − U(x)| and ∆θ� = |θ(x + �) − θ(x)| the
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longitudinal increments of the Eulerian velocity and pas-
sive scalar fields at a spatial scale �, we have Kolmogorov’s
law for the velocity [3]

∆U� ∼ ε1/3�1/3 (1)

and Obukhov-Corrsin’s law for a passive scalar [4,5]

∆θ� ∼ ε−1/6χ1/3�1/3 (2)

where ε is the dissipation, χ = Γθ〈|∇θ|2〉 is the scalar
variance dissipation rate and Γθ is the scalar diffusivity of
the fluid.

Concerning Lagrangian fields, let us note V (x0, t) and
Θ(x0, t) the velocity and passive scalar concentration of an
element of fluid at time t, initially at a position x(0) = x0.
In the following we note these V (t) and Θ(t) since we as-
sume statistical homogeneity. For the passive scalar case,
let us recall that a contaminant with zero diffusivity will
have the property that each moving fluid particle’s con-
taminant concentration remains equal to its value at the
time of release, hence the Lagrangian passive scalar fluc-
tuations do not exist (see [6], p. 236). However, when
there is a non-zero molecular diffusivity, local values of
the velocity strain rate interact with small-scale inhomo-
geneities of the passive scalar concentration, leading to
exponentially dumped inhomogeneities [6]. The molecular
diffusivity of the scalar has thus large scale effects, pro-
ducing non-trivial fluctuations of passive scalars even in
Lagrangian coordinates.

For Lagrangian statistics, scaling laws have been ob-
tained dimensionally along the same lines as for the
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Eulerian framework, for the Lagrangian velocity and pas-
sive scalar time increments ∆Vτ = |V (t + τ) − V (t)| and
∆Θτ = |Θ(t + τ)−Θ(t)|. This gives Landau’s relation for
the velocity [7]

∆Vτ ∼ ε1/2τ1/2 (3)

and Inoue’s law for passive scalars [8]

∆Θτ ∼ χ1/2τ1/2. (4)

We may note that the Eulerian power spectra are of the
form E(k) ∼ k−5/3 for velocity and passive scalars (k
is the wave number), whereas for Lagrangian fields, the
power spectra are also scaling, with a different exponent:
E(f) ∼ f−2 for both velocity and passive scalars (f is the
frequency).

These laws provide velocity and passive scalar fluc-
tuations in time or in space, assuming constant and ho-
mogeneous values for the fields ε and χ. In fact, one of
the characteristic features of fully developed turbulence is
the intermittent nature of the fluctuations of associated
fields, providing intermittent corrections for Eulerian and
Lagrangian fields (see reviews in [9–11]). This is discussed
in the next section, with the introduction of the structure
function’s framework and mixed structure functions for
Eulerian velocity and passive scalars. The following sec-
tion presents several hypotheses to relate Lagrangian pas-
sive scalar scaling exponents to Eulerian passive scalar ex-
ponents and mixed velocity-passive scalar exponents; four
predictions are obtained and are compared to each other
in the last section.

2 Eulerian and Lagrangian intermittency

2.1 Eulerian case

For Eulerian turbulence, intermittency provides correc-
tions to Kolmogorov and Obukhov-Corrsin (KOC here-
after) scaling laws, which are now well established and
received considerable attention in the last twenty years.
In the inertial range, the fluctuations of ∆U� and ∆θ� are
characterized using the scale invariant moment functions
ζu(q) and ζθ(q) (see e.g. [9–12] for a review):

〈(∆U�)q〉 ∼ �ζu(q); 〈(∆θ�)q〉 ∼ �ζθ(q) (5)

where q is the order of moment. KOC’s initial proposals,
for non-intermittent dissipation fields, lead to ζu(q) = q/3
and ζθ(q) = q/3. For intermittent turbulence, these are
cumulant generating functions, and are nonlinear and con-
cave. In equations (1) and (2), the dissipation fields ε and
χ are then replaced by random fluxes at scale �, ε� and
χ�. For the velocity, only the third moment has no inter-
mittency correction (ζu(3) = 1), whereas for the passive
scalar, there is no such exact relation, due to the nonlin-
ear product of two fluxes ε� and χ� in equation (2). Let
us note that in the framework of Kolmogorov’s hypothe-
sis, the small scale statistics are assumed to be universal,
and hence the scaling exponents ζu and ζθ are expected to

Fig. 1. The passive scalar Eulerian scaling exponent function
ζθ(q) estimated by various authors, and with an average fit (see
Tab. 1).

be rather stable and independent of the Reynolds number
and of the type of large scale flow. Indeed, for the velocity
field, many experimental and Direct Numerical Simula-
tion (DNS) studies have been performed, and the results
obtained are in favor of this universality for moments up
to about 7 [13]. For passive scalar scaling exponents (for
a review see [1]) let us mention the important result in-
dicating that even in case of uncorrelated velocity field,
the passive scalar field is multiscaling (see [14] and [15]
for a review). However, such scaling exponents are quite
far from experimental estimates, indicating that intermit-
tency in velocity fluctuations has influence on temperature
scaling exponents.

Many experimental and numerical studies have re-
ported estimations of ζθ(q): Figure 1 shows some of these
curves, published in references [16–23]. This shows a
rather good stability of ζθ(q) for q ≤ 4. Since we need
below an acceptable average ζθ curve, we estimated av-
eraged values of published estimates of ζθ(q) for integer
values of q from 1 to 8. This is shown in Figure 1 as a
continuous curve; the corresponding values are given in
Table 1, together with an error bar corresponding to var-
ious experimental estimates.

Let us also introduce the mixed velocity-passive scalar
structure functions, originally proposed by Antonia and
van Atta [24]:

〈∆θp
� ∆U q

� 〉 ∼ �z(p,q) (6)

where z(p, q) are the associated scaling exponents, with
the obvious property z(0, q) = ζu(q) and z(p, 0) = ζθ(p).
Joint multifractal moments have been studied in more de-
tails in reference [25,26]. If ∆U� and ∆θ� are independent
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Table 1. Average values of ζθ(q) with error bars, estimated
from several published estimates [16–23].

q ζθ(q)

1 0.365 ± 0.015

2 0.65 ± 0.03

3 0.85 ± 0.05

4 0.99 ± 0.05

5 1.10 ± 0.05

6 1.20 ± 0.08

7 1.30 ± 0.1

8 1.40 ± 0.12

random variables, one has z(p, q) = ζθ(p) + ζu(q); in the
general case this is not verified due to couplings between
the two fields. In the (p, q) plane, there is one line, of equa-
tion p = 2q, which is particular, since it depends only on
the passive scalar variance flux χ�:

〈(∆θ2
�∆U�

)q/3〉 ∼ �ζm(q) (7)

where we denote ζm(q) = z(2q/3, q/3). The dimensional
relation [16,18]

χ� ∼ ∆θ2
�∆U�

�
(8)

leads to:
Kχ(q) = q − ζm(3q) (9)

where Kχ(q) is the scaling exponent of the passive scalar
flux (see [16,18]):

〈(χ�)q〉 ∼ �−Kχ(q). (10)

Kχ is a second characteristic function; it is nonlinear and
concave, and the conservation of the flux leads to

Kχ(1) = 0. (11)

This relation for the flux corresponds also to Yaglom’s
1949 exact relation involving passive scalar dissipation
[27]:

〈∆θ2
� ∆U�〉 = −4

3
χ�. (12)

Equations (11) or (12) indicate that ζm(3) = 1 so that the
mixed structure functions scaling exponent ζm(q) has the
same “fixed point” as the velocity exponent ζu(q). These
two curves are also identical for non-intermittent KOC
turbulence. This explains why ζu(q) and ζm(q) have some-
times been compared. The first comparison (to our knowl-
edge) was done by Schmitt et al. [18] for high Reynolds
number atmospheric turbulence: the two curves were al-
most superposed until moment of order 5. For larger mo-
ments, ζm(q) was slightly smaller than ζu(q). The same
result was obtained using DNS data by Boratav and Pelz
(Pr = 1 and Rλ = 141) for moments of order 2, 4 and 6

Table 2. Some recent experimental estimations for ζm(q). A:
Large Re: atmospheric data [18]; B: DNS data, Pr = 1 and
Rλ = 141 [19]; C: Experimental data, coaxial rotating disks,
Pr = 0.7 and Rλ = 367 [28]; D: Experimental data, down-
stream of a cylinder, Pr = 0.7 and Rλ = 300 [29]; E: DNS
data, Pr = 1 and Rλ = 427 [23]; F: Experimental data, round
jet, Pr = 0.7 and Rλ = 550 [20]; G: Experimental data, grid
turbulence, Pr = 0.7 and Rλ = 582 [31].

q A B C D E F G

0.5 0.21 0.19

1 0.39 0.37 0.39 0.38

1.5 0.56 0.54

2 0.72 0.72 0.70 0.73 0.70

2.5 0.87 0.85

3 1 1 1 1 0.96 1.06 1

3.5 1.12 1.14

4 1.24 1.25 1.27 1.23 1.19

4.5 1.35 1.39

5 1.45 1.50 1.43

6 1.65 1.83 1.61 1.55 1.83 1.52

7 1.83 1.80

8 2.00 1.95 1.86

[19] and by Watanabe and Gotoh (Pr = 1 and Rλ = 427)
[23]; in the latter case, mixed structure functions expo-
nents have been estimated for integer moments and shown
to be clearly different (and smaller) from velocity expo-
nents only for moments larger than 4. Using experimental
data of the turbulent flow between coaxial rotating disks
(Pr = 0.7 and Rλ = 367), Pinton et al. [28] obtained
identical scaling exponents (within experimental errors)
for moments from 1 to 5. Experimental data of the flow
downstream of a cylinder analyzed by Lévêque et al. [29]
(Pr = 0.7 and Rλ = 300) showed close values for moments
less than 5; for larger moments, ζm(q) was slightly smaller
than ζu(q). Mixed structure functions are also considered
in [20,30,31] for some orders of moments. Since in the fol-
lowing the connection between Eulerian and Lagrangian
scaling exponents involves ζm(q), we give in Table 2 the
values reported in the above mentioned papers, which are
also represented in Figure 2.

We note from Figure 2 and Table 2 that the values
obtained in [18] are close to most other published values
up to moments of order 6. Therefore in the last section,
we take these values as representative of experimental es-
timates of ζm(q) until moments of order 6.

The different studies mentioned here correspond to dif-
ferent Reynolds numbers, and include atmospheric obser-
vations, laboratory experiments for various types of flows
(jets, rotating flows, homogeneous turbulence), and DNS
data. Despite this variety of conditions, the scaling expo-
nents are very stable and show, up to moments of order
5, a quite low variability between different numerical esti-
mates.
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Fig. 2. The mixed velocity-temperature Eulerian scaling ex-
ponent function ζm(q) estimated by various authors.

2.2 Lagrangian case

For the Lagrangian case, the situation is simpler, since
Inoue’s law (Eq. (4)) can be generalized to take into ac-
count intermittency using only one flux (written ϕτ in a
Lagrangian framework), giving ∆Θτ ∼ ϕ

1/2
τ τ1/2, and not

a nonlinear product between two fluxes, as was the case
for Eulerian passive scalar turbulence. Equation (4) has
been generalized by Novikov, writing [32]:

〈∆Θq
τ 〉 ∼ τξθ(q). (13)

As for the Eulerian case, for a constant dissipation one
obtains the “mean field” expression, neglecting intermit-
tency: ξθ(q) = q/2. In this framework, the third order
moment for the mixed Eulerian scaling exponent is analo-
gous to the second order moment for the Lagrangian pas-
sive scalar: in case of intermittency ξθ(q) is nonlinear and
concave, and the non-intermittent value is valid only for
q = 2: ξθ(2) = 1, indicating also that there is no intermit-
tency correction for the power spectrum exponent.

The Eulerian exponents ζθ(q) have been estimated
experimentally for many years; to our knowledge,
Lagrangian passive scalar exponents have been estimated
only for marine turbulence with a relatively low number
of points [33,34] so that the resulting curve is close to q/2.
We provide in the following theoretical hypotheses leading
to direct or parametric links between Lagrangian scaling
exponents and Eulerian passive scalar and mixed velocity-
passive scalar scaling exponents. The rest of the paper is
devoted to this issue. The next section recalls and derives
theoretical relations between these functions, correspond-
ing to different simple or more realistic hypotheses linking
space and time scales and Lagrangian and Eulerian statis-
tics.

3 Theoretical relations between Eulerian
and Lagrangian scaling exponents

3.1 Different hypothesis to relate Eulerian
and Lagrangian statistics and time and space

As we have done elsewhere for the velocity [35], we in-
troduce here two different hypotheses to relate Eulerian
and Lagrangian statistics and obtain some relations for
Eulerian and Lagrangian scaling exponents.

First, Tennekes and Lumley [6] have used ergodicity
arguments for homogeneous and isotropic turbulence in a
box, and obtained that the moments of an observable es-
timated in an Eulerian or Lagrangian frame are identical.
This was developed by Borgas [36] for the moments of the
dissipation field ε. Recently, this was extended to codimen-
sions (i.e. singularity spectra) of Eulerian and Lagrangian
velocity fluctuations [37–39].

In a phenomenological way, it can also be done for
fluxes, and using ϕτ introduced above, we obtain the hy-
pothesis of equality for Eulerian and Lagrangian moments:

〈χq
�〉 = 〈ϕq

τ 〉 Hyp.A. (14)

This can be used to relate Eulerian and Lagrangian scaling
exponents, if a dimensional relation between space and
time is available.

In the same spirit, some other studies of Lagrangian
intermittent velocity [40–42] have introduced another ar-
gument: they consider the velocity advecting Lagrangian
trajectories as a superposition of different velocity contri-
butions coming from different eddies having different char-
acteristic times. After a time τ the fastest eddies, of scale
smaller than �, are decorrelated so that at leading order,
they assume that ∆Vτ ∼ ∆U�. The same approach for the
passive scalar associated to these turbulent eddies leads
to a second hypothesis to relate Eulerian and Lagrangian
statistics:

∆Θτ ∼ ∆θ� Hyp.B. (15)

A priori this hypothesis and the previous one (Eq. (14))
are different and may lead to different scaling laws; this
will be considered below.

This is not enough to relate Eulerian and Lagrangian
scaling exponents; a relation linking space and time is
also necessary. There are two possibilities. First, noting
U = �/τ , Kolmogorov’s relation gives, neglecting the in-
termittency of the dissipation field:

�2 ∼ τ3 Hyp.α. (16)

This is also Richardson’s dispersion law [43] for non-
intermittent turbulence. This is equivalent to assume that
the dissipation, which is proportional to �2/τ3, has a con-
stant value.

On the other hand, taking into account intermittency
for the Eulerian velocity, one can write ∆U� ∼ �hu , where
hu is the singularity of the velocity fluctuations [44]. Since
we have also ∆U� ∼ �/τ , this gives [40–42]:

τ ∼ �1−hu Hyp.β. (17)



F.G. Schmitt: Relating Lagrangian passive scalar to Eulerian scaling exponents in turbulence 133

This is a local random space-time relation and corresponds
to take into account the intermittency of the dissipation.

To relate Eulerian and Lagrangian scaling exponents,
one must choose one of the statistical relations (Hypothe-
sis A or B) and one of the time-scale relations (Hypothesis
α or β). We precise below the predictions corresponding
to all these four possibilities.

3.2 Two simple relations to relate ξΘ(q)
to ζθ(q) or ζm(q)

The first and simplest choice we consider is to assume the
“characteristic time” relation and the non-intermittent
space-time relation (Hypotheses B − α), providing, using
equations (5) and (13):

ξΘ(q) =
3
2
ζθ(q) Case I. (18)

With this approach the normalization condition ξΘ(2) = 1
is not met unless ζθ(2) is exactly 2/3. In fact, considering
the usual values of ζθ(2) close to 2/3, the value of ξΘ(2)
will be close to 1.

The second simplest choice is to take the “ergodic” re-
lation and the non-intermittent space-time relation (Hy-
potheses A − α). Let us first introduce Kϕ(q), the La-
grangian scaling exponent of the passive scalar dissipation
flux, defined as:

〈ϕq
τ 〉 ∼ τ−Kϕ(q). (19)

Then Hypotheses A-α, together with equations (10) and
(19) give:

Kϕ(q) =
3
2
Kχ(q). (20)

Using equation (9) and since Kϕ(q) = q− ξΘ(2q) (coming
from the fact that the flux may be written ϕτ ∼ ∆Θ2

τ/τ),
this leads to:

ξΘ(q) =
3
2
ζm

(
3q

2

)
− q

4
Case II. (21)

We can check that for q = 2, we obtain as expected
ξΘ(2) = 1 since ζm(3) = 1. This is a simple relation
but, a priori, case II leads to a different prediction than
case I. Indeed the latter involves Eulerian mixed velocity-
temperature scaling exponent ζm(q), whereas the former
involves directly the Eulerian temperature scaling expo-
nent ζθ(q) itself.

3.3 Intermittency in the space-time relation
and a third proposal to relate ζm(q) and ξΘ(q)

We consider now another case, which is also more com-
plete, since it involves intermittency in the relation be-
tween space and time: Hypotheses A − β. This involves a
Legendre transform which is classically used in the mul-
tifractal framework and is recalled for convenience in Ap-
pendix A.

Using Hypothesis A, we write the moments in two dif-
ferent manners. On the one hand, we have equation (19).
On the other hand, we use equation (8) and write, (denot-
ing hθ and hu the singularities of the Eulerian temperature
and velocity increments):

〈χq
�〉 ∼

〈∆θ2q
� ∆U q

� 〉
�q

∼
∫

(hθ,hu)

�2qhθ+qhu+c(hθ,hu)−qd(hθ, hu)

∼
∫

(hθ,hu)

τ
2qhθ+qhu+c(hθ,hu)−q

1−hu d(hθ, hu)

where in the last line we have used Hypothesis β which
relates locally time and space, through the introduction of
the velocity singularity hu. Using equations (14) and (19),
we thus have:

−Kϕ(q) = min
(hθ,hu)

(
2qhθ + qhu + c(hθ, hu) − q

1 − hu

)
(22)

Here the minimum value is not searched for across the full
plane (hθ, hu); since the moments are proportional, the
singularities are also proportional (see Appendix B) and
we have hθ = hu/2. The minimum value is thus rather ob-
tained along a cut through a line of equation hθ = hu/2.
Let us denote c(hθ, hu) the codimension of the mixed
temperature-velocity moments and c1(hu) = c(hu/2, hu).
Then, using the result presented in Appendix B in equa-
tion (38), we have the following relation involving the
mixed moments ζm(3q) = z(2q, q):

{
ζm(3q) = 2qhu + c1(hu)
q = − 1

2c′1(hu).
(23)

This relation provides a one-to-one relation between sin-
gularities hu and order of moments q. This can be used to
evaluate equation (22). We write −Kϕ(q) = min

hu

{Hq(hu)},
with Hq given by:

Hq(hu) =
2qhu + c1(hu) − q

1 − hu
. (24)

As we have done elsewhere for similar expressions [35,45],
this is solved by equating H ′

q(h0) = 0 for a particular
singularity value denoted h0, which is associated to an
order of moments q0. The condition H ′

q(h0) = 0 gives:

q + c′1(h0)(1 − h0) + c1(h0) = 0 (25)

and with the introduction through equation (23) of the
moment of order q0 associated to h0, this simplifies into:

ζm(3q0) = 2q0 − q (26)

Equation (26), together with another use of the Legendre
transform (23), gives the Lagrangian exponent:

−Kϕ(q) = Hq(h0) =
2qh0 + c1(h0) − q

1 − h0

=
2qh0 + 2q0 − 2q − 2q0h0

1 − h0

= 2q0 − 2q.
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Using again Kϕ(q) = q − ξΘ(2q) this gives finally the
following parametric relation between Lagrangian passive
scalar scaling exponents and the Eulerian mixed moments:

{
ξΘ(q) = ζm(q0) case III
q
2 = 2q0

3 − ζm(q0).
(27)

This relation provides ξΘ(q) when the function ζm(q) is
known, the second line giving the link between q and q0.
We can check that for q0 = 3, the second line gives q = 2
and the first one, ξΘ(2) = ζm(3) = 1 as expected.

3.4 A fourth relation

We now consider the fourth case, corresponding to Hy-
potheses B−β. This gives directly, following a path anal-
ogous to case III:

τξΘ(q) ∼ 〈∆Θq
τ 〉 ∼ 〈∆θq

� 〉
∼

∫
�qhθ+c(hθ)dp(hθ)

∼
∫

τ
qhθ+c(hθ)

1−hu dp(hθ).

This then gives the following Lagrangian scaling exponent:

ξΘ(q) = min
(hθ,hu)

(
qhθ + c(hθ)

1 − hu

)
. (28)

In this expression, the min is taken not on the whole
(hθ, hu) plane, but on a set corresponding to joint (hθ, hu)
singularities associated to an actual physical situation.
Without further hypotheses on the statistical links be-
tween hθ and hu, there is no way to go further. For non-
intermittent Kolmogorov turbulence, hu = 1/3 is not ran-
dom and we recover directly case I: ξΘ(q) = 3

2ζθ(q). If
hθ and hu are independent, we may also simplify equa-
tion (28):

ξΘ(q) =
min
hθ

{qhθ + c(hθ}
max
hu

{1 − hu}

=
ζθ(q)

1 − hmin

where hmin denotes the smallest among all the hu singu-
larities. Independence between hθ and hu is of course very
unlikely to be met in real situations.

Another possibility is to consider a situation of condi-
tional expectation between velocity and temperature sin-
gularities as follows:

〈hu|hθ〉 = 2hθ. (29)

This is in agreement with the relation obtained in another
context for the conditional expectation of velocity incre-
ment versus temperature increment [46,47]. Within this

Fig. 3. Four different predictions for the Lagrangian passive
scalar scaling exponent ξΘ(q). Case I and IV curves are ob-
tained through experimental estimates of ζθ(q), whereas case
II and case III curves are obtained through experimental esti-
mates of ζm(q).

framework, we assume here that hu can be replaced by
2hθ in equation (28), leading to

ξΘ(q) = min
hθ

(
qhθ + c(hθ)

1 − 2hθ

)
. (30)

This can be solved as done above, to provide an explicit
relation giving ξΘ(q): we introduce a moment of order q0

associated to the singularity h0 minimizing the expression
given in equation (30). After using twice the Legendre
transform equation (34) this gives:

{
ξΘ(q) = ζθ(q0) case IV
q = q0 − 2ζθ(q0).

(31)

This provides a direct parametric relation between Eule-
rian and Lagrangian passive scalar scaling exponents. We
may note that for q = 2 we know that ξΘ(2) = 1 since
there is no intermittency correction for the second mo-
ment. The associated moment is q0 = 4 and this leads to
ζθ(4) = 1. There is up to now no theory predicting such
exact relation for the fourth Eulerian moment; however,
this value is compatible with available estimates. Further-
more, the average result provided in Table 1 indicates
ζθ(4) = 0.99±0.05, which is very close to this exact value.
This may be a point in favor of this fourth relation.

4 Comparison of the different predictions

We compare here the predictions provided by case I to IV.
For case I and case IV, we take here for Eulerian scaling
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exponents the average values estimated above (Tab. 1),
which are a rather good compromise between many pub-
lished values (see Fig. 1). For case II and case III, provid-
ing a prediction for Lagrangian passive scalars as a rela-
tion to the mixed Eulerian exponents, we take for ζm(q)
the values estimated in [18], which are close to other values
reported in the literature (see Tab. 2 and Fig. 2) for mo-
ments up to about 6. These different predictions are dis-
played in Figure 3. It is interesting to note that case I to III
are very close for low orders moments, which can be under-
stood by the fact that intermittency effects are expected
to become important mainly for high order moments. This
does not mean that these cases are almost identical: the
underlying hypotheses are clearly different, and questions
linked to higher moments (high order correlations, return
times, large fluctuations) have quite different output since
scaling exponents are different. Furthermore, the devia-
tion from linearity is stronger for case I and case II, which
may indicate that to take into account intermittency in
the space-time relation reduces in fact the apparent inter-
mittency of the Lagrangian estimates. The fourth predic-
tion is quite far from the others, except the common point
ζθ(2) = 1. This may be the consequence of the additional
hypothesis which was needed to obtain case IV prediction.

Let us discuss the different predictions which are pro-
vided here. A priori the local space-time relation influ-
enced by intermittency in velocity fluctuations is the more
realistic (Hypothesis β). The predictions corresponding to
case I and case II are thus mentioned mainly for illustra-
tion purposes. The predictions associated to case III and
case IV are the more realistic, since they use an intermit-
tent space-time relation. A validation using experimental
or numerical data will be needed to choose between these
cases. In the near future, when experimental or numerical
Lagrangian passive scalar data will become available, the
first validation will involve testing case IV versus case III,
since the scaling exponents associated to each case are
very different. If case III is the closer to data, then much
more data points will be needed to clearly separate the
predictions associated to case I, II or III. This may be
provided by DNS studies.

Conclusion

In another paper [35] devoted to a comparison of different
relations between Eulerian and Lagrangian scaling expo-
nents for velocity turbulence, we have been able to com-
pare predictions to experimental and DNS results. In the
present paper dealing with the same issue concerning pas-
sive scalars, comparisons with experimental or numerical
data is not yet possible. We have proposed here four new
predictions for ξθ(q), the passive scalar Lagrangian scal-
ing exponent, expressed as function of ζθ(q) and ζm(q),
the Eulerian passive scalar exponent and mixed velocity-
temperature scaling exponents respectively. Among these
four explicit relations (case I to IV) only case III and IV
seem realistic, since they take into account the local vari-
ability of space and time relation for intermittent velocity.
The three first outputs are quite close to each other for

low orders of moments (q ≤ 4), whereas they become dis-
tinguishable only for larger moments. The last prediction
(case IV) appears to provide a very different ξΘ(q) func-
tion. The fact that scaling exponents are close does not
mean that these cases are almost identical: the underlying
hypotheses are different, and questions linked to higher
moments, such as higher correlations, have quite different
output since larger scaling exponents are different.

Let us briefly comment here on the conditions of ob-
servation of this passive scalar intermittent scaling. As
mentioned in the introduction, Lagrangian intermittency
is linked to interactions of small-scale inhomogeneities of
the passive scalar concentration, with high local values of
the velocity strain. Such property could be used to study
in which conditions one may experimentally detect the
Lagrangian intermittency, using e.g. experimental results
on the dynamics of the strain field and its coupling with
vorticity [49] or the Lagrangian tetrad model [50].

Finally, it will of course be interesting to check these
results using numerical or experimental data. Let us note
that, while DNS Lagrangian results seem accessible, ex-
perimental estimates are not easy to realize at small scales.
Since the scaling exponents associated to case III and
case IV are very different, we can expect that DNS stud-
ies in the near future may be able to confirm one of these
relations. On the experimental side, we plan in future
studies to associate small-scale high frequency tempera-
ture probes with a small floating device on the surface of
water (buoy) to study passive scalar Lagrangian marine
turbulence and estimate its scaling exponents.

I thank L. Chevillard and L. Seuront for discussions, and the
referees for useful suggestions.

Appendix A

We recall here the main properties of the multifractal for-
malism, including the codimension function and the Leg-
endre transform between the moment function ζ(q) and
the codimension function c(h).

In this framework one may characterize the velocicty
fluctuations ∆U� at scale � through the singularities h and
their codimension c(h) [9,12,44,48]:

∆U� ∼ �h; p(∆U�) ∼ �c(h). (32)

Here the codimension is used instead of the more frequent
dimension f(h) = d−c(h), where d is the dimension of the
space (d = 1 or d = 3 in most studies), and p(∆U�) is the
probability density of velocity fluctuations. The moments
write:

〈∆U q
� 〉 =

∫
∆U q

� p(∆U�)

∼
∫

�qh+c(h)dp(h) ∼ �ζ(q)
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where ζ(q) is the scale invariant moment function charac-
terizing the fluctuations. Using a saddle point argument
[44], this gives the classical Legendre transform between
ζ(q) and c(h):

ζ(q) = min
h

{qh + c(h)}. (33)

This can also be written in the following way, emphasizing
the one-to-one relation between orders of moment q and
singularities h:

{
qh + c(h) = ζ(q)
q = −c′(h).

(34)

In this way each singularity is associated to a unique order
of moments.

Appendix B

We provide here the basic results obtained for joint mo-
ments of a multifractal field. We recall the expression of
the Legendre transform and discuss a particular case.

Let us consider joint moments of two multifractal field
of the form 〈∆Xp

� ∆Y q
� 〉. These fields are characterized by

singularities hx and hy:

∆X� ∼ �hx

∆Y� ∼ �hy .

We also introduce the joint moment scaling exponent
z(p, q) and the joint codimension c(hx, hy):

〈∆Xp
� ∆Y q

� 〉 ∼ �z(p,q)

p(∆X�, ∆Y�) ∼ �c(hx,hy).

Using the usual saddle-point approximation, these func-
tions are related through a double-integral:

z(p, q) = min
(hx,hy)

{phx + qhy + c(hx, hy)}. (35)

This can also be written as [25]:
⎧
⎪⎨

⎪⎩

z(p, q) = phx + qhy + c(hx, hy)
p = − ∂c

∂hx
(hx, hy)

q = − ∂c
∂hy

(hx, hy).
(36)

This relation can also be inverted to provide:
⎧
⎪⎨

⎪⎩

z(p, q) = phx + qhy + c(hx, hy)
hx = ∂z

∂p (p, q)
hy = ∂z

∂q (p, q).
(37)

Let us now consider a “linear cut” in the (p, q) plane, and
choose p = aq with a > 0. There is only one degree of
freedom in the moments, and hence one degree of freedom

for singularities which are thus also proportional: equa-
tion (37) gives hx = 1

ahy. Let us note za(q) = z(aq, q).
Relation (37) then becomes

{
za(q) = 2qhy + c( 1

ahy, hy)
hy = ∂z

∂q (aq, q) = 1
2z′a(q)

(38)

coming from the fact that z′a(q) = a∂z
∂p (aq, q)+ ∂z

∂q (aq, q) =
2∂z

∂q (aq, q). This is thus analogous to a 1-D multifractal
with h = 2hy and c(h) = c( 1

ahy, hy).
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